

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science; Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSOC; 07BAMS	LEVEL: 6
COURSE CODE: LIA601S	COURSE NAME: LINEAR ALGEBRA 2
SESSION: JANUARY 2018	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 90

SECO	ND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER:	MR G. TAPEDZESA
MODERATOR:	Dr O. SHUUNGULA

INSTRUCTIONS

- 1. Examination conditions apply at all times. **NO** books, notes, or phones are allowed.
- 2. Answer ALL the questions and number your answers clearly and correctly.
- 3. Show clearly all the steps used in the calculations.
- 4. Write clearly and neatly.
- 5. All written work must be done in dark blue or black ink.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1. [25 MARKS]

1.1 Let $T: P_1 \to \mathbb{R}^2$ be a mapping defined by

$$T[p(x)] = [p(0), p(1)].$$

(a) Find
$$T[1-2x]$$
. [1]

- (b) Show that T is a linear mapping. [5]
- (c) Is T one-to-one? Explain your answer. [6]
- 1.2 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator for which T(1,2) = (3,-1) and T(0,1) = (2,1). By noting that $\{(1,2),(0,1)\}$ is a basis of \mathbb{R}^2 , find a formula for T(x,y), and then use the formula to compute T(3, 5).
- 1.3 Let F and G be the linear operators on \mathbb{R}^2 defined by

$$F(x,y) = (x + y, 0)$$
 and $G(x,y) = (-y, x)$.

Find formulas defining the following linear operators:

(a)
$$3F - 2G$$
.

(b)
$$F \circ G$$
.

(c)
$$F^2$$
.

QUESTION 2. [23 MARKS]

- 2.1 Consider the linear operator G on \mathbb{R}^2 , defined by G(x,y)=(3x+4y,2x-5y), and the basis $S=\{(1,2),(2,3)\}$ in \mathbb{R}^2 . Find the matrix representation of G relative to S. [8]
- 2.2 Consider the bases

$$S_1 = \{p_1, p_2\} = \{6 + 3x, 10 + 2x\}$$
 and $S_2 = \{q_1, q_2\} = \{2, 3 + 2x\}$

for P_1 , the vector space of polynomials of degree ≤ 1 .

- (a) Find the transition matrix P from S_1 to S_2 . [8]
- (b) Compute the coordinate vector $[p]_{S_1}$, where p = -4 + x, and use the transition matrix you obtained in part (a) above to compute $[p]_{S_2}$. [7]

QUESTION 3. [22 MARKS]

3.1 Suppose that the characteristic polynomial of some square matrix A is found to be

$$p(\lambda) = (\lambda - 1)(\lambda - 3)^2(\lambda - 4)^3.$$

- (a) What is the size of the matrix A? [2]
- (b) Is the matrix A invertible? [2]
- (c) How many eigenspaces does A have? [2]

Explain your answers.

3.2 Suppose
$$A = \begin{bmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 and $P = \begin{bmatrix} 1 & -4 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

- (a) Confirm that P diagonalises A, by finding P^{-1} and directly computing $P^{-1}AP = D$. [9]
- (b) Hence, find A^{1000} . [7]

QUESTION 4. [20 MARKS]

- 4.1 Let $\mathbf{x}^T A \mathbf{x}$ be a quadratic form in the variables x_1, x_2, \dots, x_n , and define $T : \mathbb{R}^n \to \mathbb{R}$ by $T(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Show that $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + 2\mathbf{x}^T A \mathbf{y} + T(\mathbf{y})$ and $T(c\mathbf{x}) = c^2 T(\mathbf{x})$, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. [6]
- 4.2 Consider the equation $5x_1^2 4x_1x_2 + 8x_2^2 = 36$.
 - (a) Re-write the equation in the matrix form $\mathbf{x}^T A \mathbf{x} = 36$, where A is a symmetric matrix. [4]
 - (b) Given that the matrix

$$P = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

orthogonally diagonalises A, use a suitable variable transformation to place the conic in standard position and, hence, identify the conic section represented by the equation.

[10]

END OF QUESTION PAPER